Genetic Identification of Corkwing Wrasse Cleaner Fish Escaping from Norwegian Aquaculture

Sammanfattning: The genetic impact of farmed fish escaping aquaculture is a highly debated issue. However, non-target species, such as cleaner fish that are used in fish farms to remove parasitic sea lice, are rarely considered. Here, we report that wild corkwing wrasse (Symphodus melops), which are transported long distances to be used as cleaner fish in salmon farms, escape and hybridize with local wrasse populations. Recently, increasing numbers of corkwing wrasse have been reported north of its described distribution range, in Flatanger in Trøndelag in Norway, an area heavily relying on the import of cleaner fish from Skagerrak. Using a high number of nuclear genetic markers identified with 2bRAD sequencing, we show that, although the Flatanger population is largely a result of a northward range expansion, there is also evidence of considerable gene flow from southern populations in Skagerrak. Of the 40 corkwing wrasses first sampled in Flatanger, we discovered two individuals with clear southern genotypes, one first-generation hybrid, and 12 potential second-generation hybrids. Thus, we found clear evidence of gene flow from source populations of translocated cleaner fish at the edge of an ongoing northwards range expansion. To better understand the extent of gene flow we then greatly expanded our sampling. Based on patterns of genetic divergence and homogeneity, we identified a smaller battery of 84 SNPs which is able to detect escapees with a Skagerrak origin as well as first and secondgeneration hybrids with high accuracy and power. We then used these SNPs to investigate the magnitude and geographic extent of escaping and hybridizing cleaner fish along the Norwegian coast. We found that escapees and hybrids may constitute up to 20 % of the local populations at the northern edge of the species distribution. In other parts of the Norwegian coast where salmon farming is also common, we found surprisingly few escapees and hybrids. Possible causes for few escapees and hybrids found in these areas are difficult to evaluate with the current lack of reporting of translocations by aquaculture operators. Overall, these findings provide critical information both for aquaculture management and conservation of wild populations of non-target species, and have implications for the increasing use of cleaner fish as parasite control in fish farms, that is both poorly documented and regulated. Moving genetic material between isolated populations could drastically alter the genetic composition and erode population structure, potentially resulting in loss of local adaptation and hampering natural range expansion. Although the ecological and evolutionary significance of escapees warrant further investigation, these results should be taken into consideration in the use of translocated cleaner fish.

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.