Quantum Chemical Modelling of Biomimetic Phosphoesterase Complexes

Sammanfattning: Phosphoesterases are a class of enzymes that catalyze hydrolysis of phosphoester bonds. They facilitate the modification of nucleic acid sequences, as well as the breakdown of rest products of warfare agents and insecticides. In this thesis, three biomimetic complexes that perform the same tasks are studied using density functional theory.Two of the catalysts contain a dizinc core while the third binds an Fe(III) ion and a Mn(II)ion. These complexes catalyze the hydrolysis of the phosphodiester substrate bis-(2,4)-dinitrophenyl phosphate (BDNPP). The substrate is analogous to the phosphoric link between two nucleotides in DNA, and the system is thus a model for cleaving bonds between nucleotides.By means of computational modelling, the reaction mechanisms are investigated in detail. Different binding modes of the substrates to the catalysts are considered and several mechanistic proposals are evaluated. Conclusions are drawn on the basis of free energy barriers calculated for the different mechanisms.In all studied reactions, a hydroxide bridging the metals becomes terminally coordinated to one of the zinc ions and then attacks the phosphorus center in a nucleophilic fashion. Leaving group dissociation takes place without a barrier.One of the catalysts was also studied binding a model substrate for RNA, namely hydroxy-2-isopropyl p-nitrophenyl phosphate (HPNP). The hydroxide was found to act as a base, activating the alcohol moiety of the substrate which in turn performs the nucleophilic attack on the phosphorus center.Common for all studied systems is that the catalyst-product complex is calculated to be the most stable species. Hence, this complex is suggested to be the resting state of the catalytic cycle. The free energy barriers of the reactions are associated with going from the catalystproduct complex of one catalytic cycle to the transition state for nucleophilic attack in the next. Calculated barriers are in good agreements with experiments.

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.