Conducting Polymer Electrodes for Oxygen Reduction Reaction

Sammanfattning: Both the pollution level of the environment and the increasing energy demands have stimulated intense research on the development of low-cost environmentally-friendly energy conversion and storage systems with high efficiency, such as metal-air batteries and fuel cells.One of the most essential parts of both fuel cells and metal–air batteries is the air-electrode which is responsible for the reduction of O2. The air-electrode can use O2 from air facilitating the layout of the device; however, the process taking place on it is significantly complex. Currently, platinum (Pt) is the benchmark for air-electrodes in such technologies, although it is expensive and exhibits other important disadvantages which diminish the fuel cell performance. Therefore, extensive research has been devoted to reduce the amount of Pt used in air-electrodes and to develop a noble metal-free version of these electrodes.The area of printed electronics could facilitate the development of low-cost electrodes produced in high volume for such applications. Conducting polymers are attractive materials for this technology because they may combine several desired properties, like electronic conduction, ionic conduction and catalysis of electrochemical reactions.Among other conducting polymers, poly(3,4-ethylenedioxythiophene) (PEDOT) emerged as an alternative cathode catalyst material to Pt, due to its ability to effectively catalyze the oxygen reduction reaction (ORR), while it also exhibits high electrical and ionic conductivity.The focus of this thesis is to study the electrocatalytic activity and mechanism of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) when employed as an airelectrode in energy storage devices, such as fuel cells and metal-air batteries. Although PEDOT is extensively studied during the last decade as an air-electrode for fuel cell and metal-air batteries, vital pieces of the catalytic mechanism that PEDOT follows remain unknown, namely: (i) the sites of PEDOT on which O2 interacts and (ii) the intermediate species which are formed during the ORR. The content of this thesis tackles these topics, both from experimental and theoretical point of view. Moreover, it investigates the use of PEDOT as an active electrocatalyst in a polymer exchange membrane (PEM) fuel cell, by embedding the polymer in a cellulose matrix, aiming to fabricate a gas diffusion electrode for the ORR side of the device. Finally, the goal of the thesis surpasses the limit of the p-doped PEDOT and undertakes the evaluation of a n-type conjugated polymer of high electron affinity as a cathode in reduction processes.  

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)