Context Knowledge Base for Ontology Integration

Detta är en avhandling från Stockholm, Sweden : KTH Royal Institute of Technology

Sammanfattning: Ontology integration is a process of matching and merging two ontologies for reasons such as for generating a new ontology, thus creating digital services and products. Current techniques for ontology integration, used for information and knowledge integration, are not powerful enough to handle the semantic and pragmatic heterogeneities. Because of the heterogeneities, the ontology matching and integration have shown to be a complex problem, especially when the intention is to make the process automatic.This thesis addresses the problem of integrating heterogeneous ontologies, first, by exploring the context of ontology integration, secondly, by building a context knowledge base, and thirdly, by applying the context knowledge base. More specifically, the thesis contributes a context knowledge base method for ontology integration, CKB-OI method, which contains:1) A method of building a context knowledge base by extracting context and contextual information from ontologies in an ontology repository to improve ontology integration.2) A method of refining the result of ontology integration with the help of the context knowledge base and expanding the context rules in the context knowledge base.In the first method, the context of the ontology integration is identified by examining the content and metadata of the integrated ontologies. The context of an ontology integration contains the information describing the integration, such as the domain of ontology, the purpose of ontology, and the ontology elements involved. Context criteria, such as the metadata of ontologies and the element of ontologies in the repository, are used to model the context. The contextual information is extracted and integrated from ontologies in an ontology repository, using an ontology integration process with non-violation check. With the context and the contextual information, a context knowledge base is built. Since this is built by reusing ontologies to provide extra information for new ontology integration in the same context, it is quite possible that the context knowledge base will improve the earlier ontology integration result.A method for identifying the domain of an ontology is also proposed to help in building and using the context knowledge base. Since the method considers the semantic and pragmatic heterogeneities of ontologies, and uses a light-weight ontology representing a domain, this work increases the semantic value of the context knowledge base.In the second method, the context knowledge base is applied to the result of an ontology integration process with a non-violation check, which in turn results in an ontology intersection. The contextual information is searched for and extracted from the context knowledge base and then applied on the ontology intersection to improve the integration result. The ontology non-violation check integration process is adjusted and adopted in the method. Moreover, the context knowledge base is expanded with perspective rules, with which the different views of ontologies in a context are preserved, and reused in future ontology integration.The results of the CKB-OI methods are: 1) a context knowledge base with rules that consider semantic and pragmatic knowledge for ontology integration; 2) contextual ontology intersection (COI) with the refining result compared to the ontology intersection (OI), and 3) an extended context knowledge base with the different views of both ontologies. For evaluation, ontologies from the Ontology Alignment Evaluation Initiative (OAEI) and from ontology search engines Swoogle and Watson have been used for testing the proposed methods. The results show that the context knowledge base can be used for improving heterogeneous ontologies integration, hence, the context knowledge base provides semantic and pragmatic knowledge to integrate ontologies. Also, the results demonstrate that ontology integration, refined with the context knowledge base, contains more knowledge without contradicting the ontologies involved in our examples.