EmrE, a puzzling transporter : Assembly, biogenesis and evolution of a dual-topology membrane protein

Detta är en avhandling från Stockholm : Department of Biochemistry and Biophysics, Stockholm University

Sammanfattning: Biological membranes are the key to cell existence, as they are able to both isolate and connect their interior with the environment. Membranes are composed of lipids and proteins that create a semi-permeable barrier; because the lipid bilayer stops free diffusion of most molecules and ions, membrane proteins play an important role in connecting the interior of the cell with its environment. They function as receptors, sensing signals to trigger a response; cell adhesion molecules, holding neighboring cells together, or transporters and channels importing nutrients and extruding waste, among other chemical compounds, in a controlled manner.In order for membrane proteins to function correctly, proper insertion, folding and oligomerization in the bilayer is essential. While most membrane proteins adopt a unique orientation in the membrane, some proteins adopt multiple topologies. A well-known case is the dual-topology membrane proteins that adopt two opposite orientations in the membrane. The best-studied dual-topology protein is EmrE, a dimeric multidrug transporter found in Escherichia coli, and other bacteria.The existence of dual-topology proteins raises many questions regarding oligomerization, biogenesis and evolution of membrane proteins. In this thesis, EmrE has been used as a model protein to study some of these issues. Our goals were (i) to settle the controversy regarding whether the arrangement of the monomers within the EmrE dimer is parallel or antiparallel, (ii) to test the validity of the published X-ray structure by in vivo experiments and, (iii) to elucidate the mechanism of membrane insertion (iv) and the evolution of dual-topology membrane proteins.

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.