Genetic and Molecular analysis of the Spinocerebellar ataxia type 7 (SCA7) disease gene

Detta är en avhandling från Umeå : Medicinsk och klinisk genetik

Sammanfattning: Spinocerebellar ataxia type 7 (SCA7) is a hereditary neurodegenerative disorder affecting the cerebellum, pons and retina. SCA7 patients present with gait ataxia and visual impairment as the main symptoms. Anticipation, commonly observed in SCA7 families, is a phenomenon where an earlier age at onset and a more severe progression of disease is seen in successive generations.In order to identify the gene responsible for SCA7, we performed linkage analysis on a Swedish SCA7 kindred. Evidence for linkage of the SCA7 disease locus to a 32 cM region on chromosome 3p12-21.1, between markers D3S1547 and D3S1274, was established.A number of neurodegenerative disorders associated with anticipation are caused by expanded (CAG)n repeats in their respective disease genes. In order to isolate the SCA7 disease gene we, therefore, screened a human infant brain stem cDNA library for CAG repeat containing clones, mapping to chromosome 3. Four candidate clones were isolated and analysed, but could all be excluded as the SCA7 disease gene.In 1997, the SCA7 disease gene was identified and, as expected, shown to harbour a CAG repeat, expanded in SCA7 patients. Analysis of the SCA7 CAG repeat region in Swedish SCA7 patients demonstrated that CAG repeat size was negatively correlated to age at onset of disease. Furthermore, patients with larger repeats presented with visual impairment, whereas patients with smaller repeats presented with ataxia as the initial symptom.SCA7 is the most common autosomal dominant cerebellar ataxia in Sweden and Finland, but rare in other populations. In order to investigate if the relatively high frequency of SCA7 in these countries is the result of a founder effect in the region, a haplotype analysis was performed on all SCA7 families available. All7 families shared a common haplotype of at least 1.9 cM surrounding the SCA7 locus. In addition, strong linkage disequilibrium was demonstrated for marker D3S1287 closely linked to the SCA7 gene, suggesting a founder effect for the SCA7 mutation in Sweden and Finland.The function of the SCA7 protein, ataxin-7, is not known and it does not show significant homologies to any previously known proteins. In order to gain insight into the function of ataxin-7 we analysed the expression of ataxin-7 in brain and peripheral tissue from SCA7 patients and controls. In brain, expression was found to be mainly neuronal with a nuclear subcellular localisation. Ataxin-7 expression was found throughout the CNS, not restricted to sites of pathology. We also confirmed previously reported findings of neuronal intranuclear inclusions (NIls) in the brains of SCA7 patients. Based on our findings, we conclude that the cell type specific neurodegeneration in SCA7 is not due to differences in expression pattern in affected and non-affected tissue or the distribution pattern of aggregated protein.