Template Based Recognition of On-Line Handwriting

Sammanfattning: Software for recognition of handwriting has been available for several decades now and research on the subject have produced several different strategies for producing competitive recognition accuracies, especially in the case of isolated single characters. The problem of recognizing samples of handwriting with arbitrary connections between constituent characters (emph{unconstrained handwriting}) adds considerable complexity in form of the segmentation problem. In other words a recognition system, not constrained to the isolated single character case, needs to be able to recognize where in the sample one letter ends and another begins. In the research community and probably also in commercial systems the most common technique for recognizing unconstrained handwriting compromise Neural Networks for partial character matching along with Hidden Markov Modeling for combining partial results to string hypothesis. Neural Networks are often favored by the research community since the recognition functions are more or less automatically inferred from a training set of handwritten samples. From a commercial perspective a downside to this property is the lack of control, since there is no explicit information on the types of samples that can be correctly recognized by the system. In a template based system, each style of writing a particular character is explicitly modeled, and thus provides some intuition regarding the types of errors (confusions) that the system is prone to make. Most template based recognition methods today only work for the isolated single character recognition problem and extensions to unconstrained recognition is usually not straightforward. This thesis presents a step-by-step recipe for producing a template based recognition system which extends naturally to unconstrained handwriting recognition through simple graph techniques. A system based on this construction has been implemented and tested for the difficult case of unconstrained online Arabic handwriting recognition with good results.