Energy and Route Optimization of Moving Devices

Sammanfattning: This thesis highlights our efforts in energy and route optimization of moving devices. We have focused on three categories of such devices; industrial robots in a multi-robot environment, generic vehicles in a vehicle routing problem (VRP) context, automated guided vehicles (AGVs) in a large-scale flexible manufacturing system (FMS). In the first category, the aim is to develop a non-intrusive energy optimization technique, based on a given set of paths and sequences of operations, such that the original cycle time is not exceeded. We develop an optimization procedure based on a mathematical programming model that aims to minimize the energy consumption and peak power. Our technique has several advantages. It is non-intrusive, i.e. it requires limited changes in the robot program and can be implemented easily. Moreover, it is model-free, in the sense that no particular, and perhaps secret, parameter or dynamic model is required. Furthermore, the optimization can be done offline, within seconds using a generic solver. Through careful experiments, we have shown that it is possible to reduce energy and peak-power up to about 30% and 50% respectively. The second category of moving devices comprises of generic vehicles in a VRP context. We have developed a hybrid optimization approach that integrates a distributed algorithm based on a gossip protocol with a column generation (CG) algorithm, which manages to solve the tested problems faster than the CG algorithm alone. The algorithm is developed for a VRP variation including time windows (VRPTW), which is meant to model the task of scheduling and routing of caregivers in the context of home healthcare routing and scheduling problems (HHRSPs). Moreover, the developed algorithm can easily be parallelized to further increase its efficiency. The last category deals with AGVs. The choice of AGVs was not arbitrary; by design, we decided to transfer our knowledge of energy optimization and routing algorithms to a class of moving devices in which both techniques are of interest. Initially, we improve an existing method of conflict-free AGV scheduling and routing, such that the new algorithm can manage larger problems. A heuristic version of the algorithm manages to solve the problem instances in a reasonable amount of time. Later, we develop strategies to reduce the energy consumption. The study is carried out using an AGV system installed at Volvo Cars. The results are promising; (1) the algorithm reduces performance measures such as makespan up to 50%, while reducing the total travelled distance of the vehicles about 14%, leading to an energy saving of roughly 14%, compared to the results obtained from the original traffic controller. (2) It is possible to reduce the cruise velocities such that more energy is saved, up to 20%, while the new makespan remains better than the original one.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)