Feasibility and Performance of Dynamic TDD in Dense and Ultra-Dense Wireless Access Networks

Sammanfattning: Meeting the seemingly never-ending increase in traffic over wireless networks presents a major challenge for future mobile network design. Given that much of the traffic is expected to be more time-varying and unpredictable, time division duplexing (TDD) is gaining increasing favorability in part thanks to its ability to better accommodate network-wide traffic variations. In order to account for traffic variations in individual cells on much shorter time scales, a more flexible variant called dynamic TDD has resurfaced as a promising technique to further improve resource utilization and performance. In dynamic TDD the traffic in each cell can be served immediately in either direction, but generates same-entity interference which is potentially more harmful. To avoid the much stronger downlink from saturating the uplink, this thesis considers dynamic TDD for dense and ultra-dense networks where transmission powers in the two directions are of comparable strength. Still, inter-cell interference remains an issue given the close proximity of some links. Because of the large number of cells comprising dense and ultra-dense networks, it is imperative that the interference management be both effective and scalable, which is the main focus of this thesis.In the first part we focus on scalable radio resource management (RRM). We show that non-cooperative dynamic TDD is feasible for indoor ultra-dense deployment and highlight the benefit of employing beamsteering at both the base station (BS) and user equipment (UE) to mitigate interference distributively, especially at high load. Recognizing that beamsteering is better suited for higher frequencies and high data rate applications, we proceed to investigate the efficacy of receive-side interference management in the form of successive interference cancellation (SIC). Being that the interference distribution is different in dynamic TDD, we show that it suffices to cancel only strongest interferer at the UE side and the two strongest interferers at the BS. The combined benefit of SIC and dynamic TDD in reducing delay for low-rate traffic is also displayed. Next, we introduce limited inter-cell information exchange in order to leverage the resource allocation in the medium access control (MAC). To minimize the amount of information exchange and preserve scalability, a scheduling framework is proposed that relates real-time traffic to inter-BS interferences measured offline and mapped to the individual activation probability of each BS. The proposed scheme is shown to perform well with respect to comparable scalable schedulers when interference is high, and optimally when interference is low.In ultra-dense networks it is expected that some BSs might not have a UE to serve. In the second part, we therefore introduce cooperation to utilize the otherwise idle BSs to improve network performance. To mitigate both same- and other-entity interference, zero forcing (ZF) precoding is employed where not only downlink UEs but also uplink BSs are included in the beamforming. Results show that both uplink and downlink performance improves at low and medium load, and that it is possible to trade performance in the two directions at high load.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)