Mass transfer during isothermal drying of a porous solid containing multicomponent liquid mixtures

Sammanfattning: Mass transfer in a porous solid, partially saturated with asingle solvent and multicomponent liquid mixtures, has beenexperimentally and theoretically studied. A porous materialcontaining single liquids and mixtures of organic solvents wasisothermally dried. Experiments were performed using a jacketedwind tunnel, through which a humidity andtemperature-controlled air stream flowed. The wetted porousmaterial was placed in a cylindrical vessel, whose top isexposed to the air stream until the material became dried to acertain extent. Drying experiments with the single solventswater, methanol, ethanol and 2-propanol, were performed atdifferent temperatures and transient liquid content profileswere determined. In isothermal drying experiments with liquidmixtures,the transient concentration profiles of thecomponents along the cylindrical sample as well as the totalliquid content were determined. The liquid mixtures examinedwere water-methanolethanol and isopropanol-methanol-ethanol.Two different temperatures and initial compositions were usedin the experiments. Mathematical models that describe nonsteadystate isothermal drying of a solid containing single liquidsand multicomponent liquid mixtures were developed. In the solidwetted with a single liquid, capillary movement of the liquidwas the main mechanism responsible for mass transfer. In thesolid containing liquid mixtures, interactive diffusion inliquid phase was superimposed to the capillary movement of theliquid mixture. In addition, interactive diffusion of thevapours in empty pores was considered. The parameters todescribe the retention properties of the solid and thecapillary movement of the liquid were determined by comparingtheoretical and experimental liquid content profiles obtainedduring drying of the solid wetted with single liquids. Tosimulate the transport of the liquid mixtures these parameterswhere weighed according to liquid composition. A fairly goodagreement between theoretical and experimental liquidcomposition profiles was obtained if axial dispersion isincluded in the model when the moisture consists of amixture. Keywords:Internal mass transfer, capillary flow,multicomponent, diffusion, solvent mixtures

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)