Structure determination and thermodynamic stabilization of an engineered protein-protein complex

Detta är en avhandling från Stockholm : KTH

Sammanfattning: The interaction between two 6 kDa proteins has been investigated. The studied complex of micromolar affinity (Kd) consists of the Z domain derived from staphylococcal protein A and the related protein ZSPA-1, belonging to a group of binding proteins denoted affibody molecules generated via combinatorial engineering of the Z domain. Affibody-target protein complexes are good model systems for structural and thermodynamic studies of protein-protein interactions. With the Z:ZSPA-1 pair as a starting point, we determined the solution structure of the complex and carried out a preliminary characterization of ZSPA-1. We found that the complex contains a rather large (ca. 1600 Å2) interaction interface with tight steric and polar/nonpolar complementarity. The structure of ZSPA-1 in the complex is well-ordered in a conformation that is very similar to that of the Z domain. However, the conformation of the free ZSPA-1 is best characterized by comparisons with protein molten globules. It shows a reduced secondary structure content, aggregation propensity, poor thermal stability, and binds the hydrophobic dye ANS. This molten globule state of ZSPA-1 is the native state in the absence of the Z domain, and the ordered state is only adopted following a stabilization that occurs upon binding. A more extensive characterization of ZSPA-1 suggested that the average topology of the Z domain is retained in the molten globule state but that it is represented by a multitude of conformations. Furthermore, the molten globule state is only marginally stable, and a significant fraction of ZSPA-1 exists in a completely unfolded state at room temperature. A complete thermodynamic characterization of the Z:ZSPA-1 pair suggests that the stabilization of the molten globule state to an ordered three helix structure in the complex is associated with a significant conformational entropy penalty that might influence the binding affinity negatively and result in an intermediate-affinity (µM) binding protein. This can be compared to a dissociation constant of 20-70 nM for the complex Z:Fc of IgG where Z uses the same binding surface as in Z:ZSPA-1. Structure analyses of Z in the free and bound state reveal an induced fit response upon complex formation with ZSPA-1 where a conformational change of several side chains in the binding surface increases the accessible surface area with almost 400 Å2 i.e. almost half of the total interaction surface in the complex. Two cysteine residues were introduced at specific positions in ZSPA-1 for five mutants in order to stabilize the conformation of ZSPA-1 by disulfide bridge formation. The mutants were thermodynamically characterized and the binding affinity of one mutant showed an improvement by more than a factor of ten. The improvement of the introduced cysteine bridge correlates with an increase in binding enthalpy rather than with entropy. Further analysis of the binding entropy suggests that the conformational entropy change in fact is reduced but its favorable contribution is opposed by a less favorable desolvation enthalpy change. These studies illustrate the structural and thermodynamic complexity of protein-protein interactions, but also that this complexity can be dissected and understood. In this study, a comprehensive characterization of the ZSPA-1 affibody has gained insight into the intricate mechanisms involved in complex formation. These theories were supported by the design of a ZSPA-1 mutant with improved binding affinity.

  HÄR KAN DU HÄMTA AVHANDLINGEN I FULLTEXT. (följ länken till nästa sida)