The Design Platform Approach –Enabling platform-based development in the engineer-to-order industry

Detta är en avhandling från Jönköping : Jönköping University, School of Engineering

Sammanfattning: Manufacturing companies are continuously faced with requirements regarding technology novelty, shorter time to market, a higher level of functionality, and lower prices on their products. This is especially the case for companies developing and manufacturing highly customized products, also known as engineer-to-order (ETO) companies. The traditional view of the product lifecycle introduces the customer only at the sale and distribution phase, which is often concerned with identifying and transferring customer needs into fixed specifications that guide the development of end-consumer products. In the ETO industry, however, the customer is involved already at the scoping and quotation stage, and a significant amount of engineering needs to be performed for every customer order. Thus, ETO companies cannot work according to the traditional model described above since specific requirements are set directly by the customer, or a detailed requirements specification is missing and must be developed in cooperation with the customer. It is not uncommon that products are developed in joint ventures with the customer and run for several years, during which requirements change.Product platform approaches have been generally accepted in the industry to serve a wide product variety while maintaining business efficiency. However, how to apply a product platform approach in ETO companies that face the reality described above is a challenge. Product platform approaches tend to require focused development of the platform, which, in turn, requires some knowledge about the future variants to be derived from the platform. The research presented in this thesis investigates the state of art and practice in the industry regarding the challenges, needs, and current use of product platforms. To respond to the identified need, a product platform approach is proposed that expands the scope of what a product platform has traditionally contained. The purpose of this proposal is to aid the development of highly customized products when physical modules or component scalability do not suffice. The resulting approach, the Design Platform Approach (DPA), provides a coherent model and methodology for heterogeneous engineering assets to be used in product development, supporting the activity of designing and existing solutions. The approach is based on identifying and modelling generic product and process items, which are the generic building blocks of the product, its structure, and the process of designing them. The generic product and process items are associated with the generic assets governing their design. By describing engineering assets that are the outcome of technology and product development, such as finished designs, design guidelines, constraints etc., in a standardized format, the DPA successively evolves.This thesis outlines the DPA in detail and presents cases of applications that have focused on different aspects of the approach. Tools to support the DPA are presented and evaluated in different kinds of industries along with the specific methods used and literature summarization.