Studies on Polarised Light Spectroscopy

Detta är en avhandling från Linköping : Linköping University Electronic Press

Sammanfattning: This thesis project focuses on measurements of dermal microcirculation during vascular provocations with polarised light spectroscopy. This is done with a non-invasive method commercially available as Tissue viability imaging (TiVi) which measures concentration and oxygenation of red blood cells in the papillary dermis. Three studies were done with human subjects and one with an animal model, to validate and compare the TiVi technique with laser Doppler flowmetry, which is an established method of measuring dermal microcirculation.The TiVi consists of a digital camera with polarisation filters in front of the flash and lens, with software for analysis of the picture. When taking a picture with the TiVi, the polarised light that is reflected on the skin surface is absorbed by the second filter over the lens (which is perpendicular to the first filter) but a portion of light penetrates the surface of the skin and is scattered when it is reflected on tissue components. This makes the light depolarised, passes the second filter, and produces a picture for analysis. The red blood cell (RBC) has a distinct absorption pattern that differs between red and green colour compared to melanin and other components of tissue. This difference is used by the software that calculates differences in each picture element and produces a measure of output which is proportional to the concentration of red blood cells. The oxygenation of RBC can also be calculated, as there is a difference in absorption depending on oxygen state.The first paper takes up possible sources of error such as ambient light, and the angle and distance of the camera. The main experiment was to investigate how the local heating reaction is detected with TiVi compared to LDF.In the second paper arterial and venous stasis are examined in healthy subjects with TiVi.The Third paper is an animal study where skin flaps were raised on pigs, and the vascular pedicle is isolated to enable control of inflow and outflow of blood.The measurements were made during partial venous, total venous, and total arterial occlusion. The TiVi recorded changes in the concentration of RBC, oxygenation and heterogeneity and the results were compared with those of laser Doppler flowmetry.In the fourth paper oxygenation and deoxygenation of RBC: s was studied. Studies were made on the forearms of healthy subjects who were exposed to arterial and venous occlusion. Simultaneous measurements were made with TiVi and Enhanced perfusion and oxygen saturation or EPOS, which is a new device that combines laser Doppler flowmetry and diffuse reflectance spectroscopy in one probe.With TiVi, one can measure RBC concentration and oxygenation in the area of an entire picture or in one or multiple user defined regions of interest (ROI). Methods such as laser Doppler flowmetry makes single point measurements, which is a potential source of error both because of the heterogeneity of the microcirculation, and that the circulation be insufficient in the margins of the investigated area. TiVi has been able to measure venous stasis more accurately than laser Doppler flowmetry, and venous stasis is the more common reason for flaps to fail.The TiVi is an accurate way to measure the concentration of RBC and trends in oxygenation of the dermal microcirculation. It has interesting possible applications for microvascular and dermatological research, monitoring of flaps, and diagnosis of peripheral vascular disease. Future clinical studies are needed as well as development of the user interface.  

  HÄR KAN DU HÄMTA AVHANDLINGEN I FULLTEXT. (följ länken till nästa sida)