Nitrification and Nitrifying Bacterial Communities in Coniferous Forest Soils : Effects of Liming and Clear-Cutting

Sammanfattning: This thesis deals with the effects of liming and clear-cutting on nitrification in hemi-boreal and northern temperate coniferous forest soils. The approach has been to study both the potential nitrification and the community structure of the ammonia-oxidising bacteria, which carry out the first step of autotrophic nitrification. The potential nitrification was measured over short time incubations at optimal conditions for acid-sensitive, autotrophic nitrification. This method yields the potential nitrification of the actual nitrifying community. I studied the autotrophic ammoniaoxidising community at gene level (16S rRNA gene) using molecular methods, such as polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), single-strand conformation polymorphism (SSCP), and DNA sequencing. The results illustrate that both liming and clear-cutting may increase the potential nitrification by stimulating the growth of ammonia-oxidisers. Both these forest practises seem to favour the growth of Nitrosospira cluster 4-affiliated ammonia-oxidisers, although Nitrosospira cluster 2-affiliated bacteria also was present. The stimulated growth of the ammonia-oxidisers is caused by increased ammonia availability and more favourable pH (i.e. higher and more stable pH over time). The results also show that clear-cutting causes more intense growth of the ammonia-oxidisers and thereby larger potential nitrification than liming does. When forests that have previously been limed are clearcut, nitrification responses more rapidly and the rates are larger compared to non-limed forests, since the ammonia-oxidising communities in limed soils seem better adapted to the conditions after the cutting. Liming does, however, not always increase nitrification. Although it may increase nitrogen mineralisation, it seems like the nitrogen status of the soil prior to liming is the most important factor, since liming caused the greatest response in potential nitrification in areas receiving high nitrogen deposition (>10 kg ha-1 year-1). These results suggest that although liming and clear-cutting cause similar response of the ammonia-oxidisers, the risks within creasing nitrification, such as nitrate leaching and increased emissions of the greenhouse gas nitrous oxide, are larger following clear-cutting, due to greater nitrification rates and the fact that root uptake of nitrate is interrupted.

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.