Speciation analysis of butyl- and phenyltin compounds in environmental samples by GC separation and atomic spectrometric detection

Detta är en avhandling från Umeå : Kemi

Sammanfattning: The main goal of the work presented in this thesis is to improve the reliability of existing methods for speciation analysis of organotin compoundsSpecies-specific isotope dilution (SSID) calibration in combination with gas chromatography – inductively coupled plasma mass spectrometry was used to investigate the transformation of phenyltin species during sample preparation. Isotope-enriched phenyltin species were synthesized from corresponding isotope-enriched tin metals. SSID with a mixture of phenyltin species (PhTs) from one isotope was used to evaluate different extraction procedures for the determination of PhTs in fresh water sediment. Preparative liquid chromatography was used to produce single isotope-enriched phenyltin species making a multi-isotope spike (MI) SSID calibration possible. Different extraction procedures for the analysis of phenyltin species in biological samples were evaluated by applying MI-SSID. Degradation of TPhT and DPhT during sample extraction was observed and quantified. Accurate results were therefore obtained. A sample preparation procedure using mild extraction conditions with reasonable recoveries is described.The stability of organotin standards was investigated under different storage conditions. Mono- and diphenyltin were found to be redistributed and degraded during storage in methanol but were stabilized in sodium acetate/ acetic acid. A fast redistribution between monobutyl- and diphenyl tin has been observed and therefore it is therefore recommended that standards be derivatized as soon as possible after butyl- and phenyltin standards are mixed.Included in the thesis is also an investigation of the analytical potential of using instrumentation based on atomic absorption spectrometry (AAS) for speciation analysis of organotin compounds. The method was based on gas chromatographic separation, atomization in a quartz tube and detection by line source (LS) AAS and for comparison, by state of the art continuum source (CS) AAS. Analytical performances of CSAAS system were found to be better compared to LSAAS.

  HÄR KAN DU HÄMTA AVHANDLINGEN I FULLTEXT. (följ länken till nästa sida)