Prognostic markers and DNA methylation profiling in lymphoid malignancies

Sammanfattning: In recent years, great progress has been achieved towards identifying novel biomarkers in lymphoid malignancies, including chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), at the genomic, transcriptomic and epigenomic level for accurate risk-stratification and prediction of treatment response. In paper I, we validated the prognostic relevance of a recently proposed RNA-based marker in CLL, UGT2B17, and analyzed its expression levels in 253 early-stage patients. Besides confirming its prognostic impact in multivariate analysis, we could identify 30% of IGHV-mutated CLL (M-CLL) cases with high expression and poor outcome, which otherwise lacked any other poor-prognostic marker. In paper II, we investigated the prognostic impact of a previously reported 5 CpG signature that divides CLL patients into three clinico-biological subgroups, namely naive B-cell-like CLL (n-CLL), memory B-cell-like CLL (m-CLL) and intermediate CLL (i-CLL), in 135 CLL patients using pyrosequencing. We validated the signature as an independent marker in multivariate analysis and further reported that subset #2 cases were predominantly classified as i-CLL, although displaying a similar outcome as n-CLL. In paper III, we investigated the methylation status and expression level of miR26A1 in both CLL (n=70) and MCL (n=65) cohorts. High miR26A1 methylation was associated with IGHV-unmutated (U-CLL) and shorter overall survival (OS) in CLL, while it was uniformly hypermethylated in MCL. Furthermore, overexpression of miR26A1 resulted in significant downregulation of EZH2 that in turn led to increased apoptosis. In paper IV, we performed DNA methylation profiling in 176 CLL cases assigned to one of 8 major stereotyped subsets (#1-8) in relation to non-subset CLL (n=325) and different normal B-cell subpopulations. Principal component analysis of subset vs. non-subset CLL revealed that U-CLL and M-CLL subsets generally clustered with n-CLL and m-CLL, respectively, indicating common cellular origins. In contrast, subset #2 emerged as the first defined member of the i-CLL subgroup, which in turn alludes to a distinct cellular origin for subset #2 and i-CLL patients. Altogether, this thesis confirms the prognostic significance of RNA and epigenetic-based markers in CLL, provides insight into the mechanism of miRNA deregulation in lymphoid malignancies and further unravels the DNA methylation landscape in stereotyped subsets of CLL.