Optimal damping and slow sound in ducts

Sammanfattning: The thesis is dedicated to expanding knowledge on two duct acoustic issues including: 1) the optimal damping of low frequency sound and 2) the development and application of ‘slow sound’.To address the first issue, the ‘Cremer impedance’ proposed more than half a century ago has been revisited and further developed. The original motivation is to extend the concept from large duct applications, such as aero-engines, to low frequency applications including vehicle intake and exhaust or cooling and ventilation systems. This leads to the derivation of the ‘exact’ solution of the Cremer impedance for single-lined rectangular ducts valid in the low frequency range in the presence of a ‘plug’ flow. A substantial improvement in the low frequency damping is achieved with the exact solution and a measurement campaign is carried out to validate this.However, for both circular and rectangular ducts (including single-lined and double-lined types) the exact solution of the Cremer impedance has a negative real part in the low frequency range. This indicates that an active boundary is required to provide the optimal damping. Two investigations on the negative resistance are conducted. First, the ‘plug’ flow is replaced by a sheared flow by changing the boundary condition in the optimization model. With this modification, the Cremer impedance is recalculated and the negative resistance is still found in most cases, demonstrating that the negative resistance is not necessarily an artefact of the boundary condition. Second, since the Cremer impedance is based on mode-merging, a mode-merging analysis is carried out. The merging result shows that the downstream results are always valid, but some of the upstream results in the low frequency range are invalid in the sense that unexpected mode pairs merge, and the corresponding damping is smaller than expected. This finding is true for both the fundamental mode and higher order modes.Regarding the second issue, ‘slow sound’ or sound with a much reduced ‘phase velocity’ is investigated using a resonant periodic system in the low frequency range. This can be seen as an acoustic metamaterial where sound propagates at a much smaller-than-normal speed around its resonance frequency. Following a hydrodynamic particle agglomeration model, the slow sound is applied to manipulate the distribution of small particles in the vehicle exhaust system. Although in principle this acoustic agglomeration method can work, it will only be efficient if the wave damping in the metamaterial is kept small. 

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)