Self-Lubricating Laser Claddings in the Context of Hot Metal Forming

Sammanfattning: Laser cladding is a coating technique with significant advantages like the high quality of the resulting layers, their excellent metallurgical bonding to the substrate or the possibility to repair/rework high-value mechanical components. In recent years, the incorporation of solid lubricants to the base powder in order to produce self-lubricating claddings has been shown in the literature to be possible, with several of the described coatings being able to operate at high temperatures with low friction and wear. This has been considered to hold a great potential for industrial applications involving high temperature work pieces like hot metal forming.In recent years, the hot stamping of ultra-high strength steel has become increasingly popular due to the enhanced ductility of the work piece and the possibility to achieve a fully martensitic microstructure, to the point that this forming technique has become widespread in the automotive industry. However, the use of Al-Si-based protective coatings on the work piece in order to prevent oxidation and decarburisation is the source of a poor tribological behaviour due to the formation of Al-Fe intermetallics by diffusion from the steel substrate. This can lead to significant material transfer to the tool in addition to a decreased quality of the finished product due to surface damage.In an attempt to improve the tribological contact in high temperature metal forming applications while at the same time decreasing the need for lubrication, nickel- and iron-based self-lubricating coatings have been prepared by means of laser cladding, featuring the incorporation of different combinations of solid lubricants including soft metals like silver and copper in addition to transition metal dichalcogenides like MoS2 and WS2. The resulting laser claddings were thoroughly characterised, including their microstructure, oxidational properties and their tribological behaviour at high temperatures under different contact configurations and counter bodies.During the present study, it has been observed that the addition of sulfur-containing precursors to the base powder used for coating preparation leads to the encapsulation of silver, preventing it from floating to the melt pool surface during the cladding process and thus allowing for a uniform distribution of the soft metal across the whole thickness of the coating.Additionally, it has been observed that the chromium sulfides resulting from the thermal degradation of transition metal dichalcogenides during laser cladding are effective solid lubricants at high temperatures, while silver also contributes to decreased friction at room temperature. Thus, the addition of Ag and MoS2 to nickel-based self-lubricating claddings has been considered optimum in terms of the resulting tribological behaviour, as it leads to decreased friction up to temperatures of 600°C. Additionally, it has been found that the addition of solid lubricants like MoS2 to the nickel-based claddings leads to negligible counter body wear at high temperatures, coupled to the formation of a protective tribolayer on the counter body composed of oxidised nickel, chromium and sulfur. This behaviour has been consistently observed under different testing configurations, like reciprocating against both steel- and aluminium-based counter bodies, in addition to high temperature sliding tests against Al-Si-coated boron steel, and it is expected to protect the surface of the work piece during hot metal forming processes.