High-Temperature Fatigue in a Steam Turbine Steel : Modelling of Cyclic Deformation and Crack Closure

Sammanfattning: Existing conventional thermal power plants are retrofitted for flexible operations to assist the transition toward more renewable energies. The deployment of many renewable energy power plants is necessary to achieve a clean environment with less pollution. However, the intermittent nature of renewable energies, due to weather changes, and the lack of efficient large energy storage systems put renewables at a disadvantage. Flexible operations of power plants imply fast and frequent start-ups. Thus, retrofitted power production plants can be utilised as an energy backup to satisfy the immediate demand during peak energy times or when renewable energies are suddenly limited. Large thermal power plants generally employ steam turbines with high inlet temperature and pressure steam conditions. Materials used for components at the high-temperature turbine sections are expected to withstand harsh environments. The use of 9-12 % Cr martensitic steels is desirable due to, among other things, their superior resistance to creep for temperatures up to 625 °C. Retrofitting for flexible operations put steam turbine components under high-temperature fatigue loading conditions different from how they were designed before. The flexible operations could lead to fatigue cracking at critical locations, such as grooves and notches at the inner steam turbine casing. Thus, fatigue behaviour understanding of steam turbine materials under such loading conditions is essential for components life prediction. Accurate and less conservative fatigue life prediction approach is necessary to extend the turbine components life, which reduces waste and provides economic benefits. This can be done by extending operations past crack initiation phase and allowing controlled propagation of cracks in the components. Within the 9-12 % Cr steel class, the martensitic steam turbine steel called FB2 is studied under high-temperature fatigue. This includes investigating high-temperature fatigue life behaviour, cyclic deformation behaviour, stress relaxation behaviour, and crack propagation behaviour along with crack closure behaviour. This was achieved by experimentally testing samples made from FB2 steel under isothermal low cycle fatigue, isothermal fatigue crack propagation, and thermomechanical fatigue crack propagation. 

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.