Microalgae for Phosphorus Removal from Wastewater in a Nordic Climate

Detta är en avhandling från Stockholm : KTH

Sammanfattning: As part of a research project aiming to develop and evaluate a hydroponic system for wastewater treatment in Sweden, extended nutrient removal by microalgae was tested. The hydroponic/microalgal wastewater treatment system was built in a greenhouse in order to improve growth conditions for plants and algae. Studies on the treatment step with microalgae showed that phosphorus removal could be successfully accomplished owing to the cmbined effect of phosphorus assimilation and biologically mediated chemical precipitation of calcium phosphates. This precipitation was mainly induced by the increased pH in the algal cultures, and the pH increase was in turn a result of the inorganic carbon assimilation by the algae. The results showed that the algal growth was mainly light limited which resulted in higher algal biomass density and also lowe residual nutrients in the water at longer hydraulic retention times (HRT). In contrast the phosphorus removal rate was load limited, i.e. shorter HRT gave higher removal rates. This load dependency was due to the chemical precipitation, whereas the phosphorus assimilation was dependent on algal growth. Furthermore, results from an intensive study during summer showed that culture depths of 17 cm gave higher removal efficiencies (78% - 92%) than cultures of 33 cm (66% - 88%). On the other hand, the removal rate per area was higher in the deeper cultures, which implies that these may be preferred if area is of concern.Nitrogen removal was achieved mainly by the assimilation of nitrate to algal biomass, and removal efficiencies of around 40% (nitrate) could be reached for most parts of the year although the nitrogen removal performance was quite uneven. Up to 60% - 80% could however be reached during summer in the shallow cultures. A net removal in total nitrogen of up to 40% was observed in the shallow cultures during summer, which was most probably a consequence of grazing zooplankton and subsequent urea excretion and ammonia volatilisation as a reslt of the high pH values.Over the year, there were large fluctuations in algal growth and removal efficiency as a result of the seasonal variations in light and tempeature. During winter, phosphorus removal efficiencies lower than 25% were observed in the shallow tanks and lower than 10% in the deep tanks. Additional illumination during winter improved the phosphorus removal in the shallow cultures but did not have a significant efect on the deep cultures. Such additional illumination increases the total energy demand of the system, and hence alternative methods for phosphorus removal during winter would probably be more economical unless the algal biomass roduced had great commercial value.