Particle emissions from car brakes The influence of contact conditions on the pad-to-rotor interface

Detta är en avhandling från Stockholm : KTH Royal Institute of Technology

Sammanfattning: Due to their adverse health effects emissions have been regulated for over three decades. Brake wear particulate matter is the most important non-exhaust source, however current knowledge is mainly limited to observational studies. This thesis aims to investigate relations between the brake system contact conditions and the related emissions on a model scale; validate the results on a component level; and understand to what extent they are significant on a full-scale.Paper A investigates the influence of nominal contact pressure on a model scale. Results show that higher pressure corresponds to higher emissionsPaper B investigates the influence of the nominal contact pressure, for different friction materials, on a model scale. A temperature threshold, responsible for a relevant emission increase, is identified.Paper C investigates particle characteristics and wear mechanisms for different nominal contact pressures, on a model scale. Results show an enhanced tribo-layer at higher pressure levels.Paper D investigates the influence of brake system conditions on emissions, on a model scale. Results show that frictional power is the most important parameter. A transition temperature independent of the contact condition is identified.Paper E investigates similarities occurring on a component scale and a model scale in terms of emissions. Results show a promising correlation, and the possibility of using a pin-on-disc tribometer for R&D activities.Paper F investigates analogies occurring on a component scale and a model scale, in terms of friction performance, fictional surface and chemical composition. Results show similar phenomena occurring for the two test stands.Paper G analyses real brake system working conditions in a urban environment defining, by means of an inertia dyno bench, the related emissions. Results reveal emission factors compliant to EURO6 and EURO2 regulations, in terms of number and mass, respectively.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)