Aerodynamics simulations of ground vehicles in unsteady crosswind

Sammanfattning: Ground vehicles, both on roads or on rail, are sensitive to crosswinds and the handling, travelling speeds or in some cases, safety can be affected. Full modelling of the crosswind stability of a vehicle is a demanding task as the nature of the disturbance, the wind gust, is complex and the aerodynamics, vehicle dynamics and driver reactions interact with each other. One of the objectives of this thesis, is to assess the aerodynamic response of simplified ground vehicles under sudden strong crosswind disturbances by using an advanced turbulence model. In the aerodynamic simulations, time-dependant boundary data have been used to introduce a deterministic wind gust model into the computational domain. This thesis covers the implementation of such gust models into Detached-Eddy Simulations (DES) and assesses the overall accuracy. Different type of grids, numerical setups and refinements are considered. Although the overall use of DES is seen suitable, further investigations can be foreseen on more challenging geometries. Two families of vehicle models have been studied. The first one, a box-like geometry, has been used to characterize the influence of the radius of curvature and benefited from unsteady experimental data for comparison. The second one, the Windsor model, has been used to understand the impact of the different rear designs. Noticeably, the different geometries tested have exhibited strong transients in the loads that can not be represented in pure steady crosswind conditions.The static coupling between aerodynamics and vehicle dynamics simulations enhances the comparisons of the aerodynamic designs. Also, it shows that the motion of the centre of pressure with respect the locations of the centre of gravity and the neutral steer point, is of prime interest to design vehicles that are less crosswind sensitive. Recommendations on the future work on crosswind sensitivity for ground vehicles are proposed at the end of this thesis.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)