Lipase-Lipid Interactions Studied by Site-Directed Labeling and Biological Spectroscopy

Detta är en avhandling från Stockholm : KTH

Sammanfattning: This thesis describes the study of lipase–lipid interactions of the triglyceride lipase Thermomyces lanuginosus lipase, TLL, by use of site-directed chemical labeling and biological spectroscopy. Several single-cysteine variants of TLL were produced, and labeled with probes containing either an affinity-, a fluorescence- or a spin-label functionality. A combined reduction- and labeling protocol was elaborated for the TLL single-cysteine variants, which were found to be prematurely oxidized during production. A diagnostic dot-blot method based on biotin-avidin interactions was established for the detection of free thiols in recombinant proteins. This method has a picomole detection limit and was found accurate in free thiol quantitation.Unilamellar phospholipid vesicles consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG) or of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyl-choline (POPC) were produced as stable, well-defined lipid interfaces, to which TLL is known to bind with high affinity. The binding orientation of TLL was investigated, employing eleven spin-labeled TLL single-cysteine variants with the point-mutations positioned around the protein surface. Spin-relaxation enhancement was induced by the spin-relaxation agent chromium(III) oxalate (Crox), and a novel ESR-method for measuring the interactions of nitroxide spin-labels at low-microwave amplitudes was established. This method requires only standard ESR-instrumentation and is optimal for surface-exposed spin-labels. The interactions of TLL spin-labels with Crox in the aqueous phase were studied by ESR spectroscopy, while spin-label interactions with the lipid phase were analyzed by fluorescence quenching of dansyl-labeled vesicles. In addition, ESR-data was employed in conjunction with electrostatic potential-based modeling to dock TLL on the membrane of small POPG vesicles. This afforded information on the detailed molecular orientation of TLL at the lipid–water interface.TLL was found to bind on 50-nm–diameter POPG vesicles in an activated form with the active-site entrance and the proximal part of the lid oriented against the lipid membrane. On 100 nm POPG vesicles and 50 nm POPC vesicles, TLL was oriented with the active site facing away from the membrane, corresponding to approximately a 180-degree–rotation about TLL’s vertical axis. There was no deep penetration of TLL residues in the lipid membranes, but TLL was found to associate closer to the negatively charged POPG-surface, than that of the zwitterionic POPC. TLL was also able to bind to two vesicles simultaneously, as revealed by fluorescence resonance energy transfer (FRET) between fluorescent labeled vesicles. The experimental data obtained provided insights into the interfacial behaviour of a triglyceride lipase.

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.