Marine Current Resource Assessment : Measurements and Characterization

Sammanfattning: The increasing interest in converting energy from renewable resources into electricity has led to an increase in research covering the field of marine current energy, mainly concerning tidal currents and in-stream tidal turbines. Tides have the advantage of being predictable decades ahead. However, the tidal resource is intermittent and experiences local variations that affect the power output from a conversion system. The variability is mainly due to four aspects: the tidal regime, the tidal cycle, bathymetry at the site and weather effects. Each potential site is unique, the velocity flow field at tidal sites is highly influenced by local bathymetry and turbulence. Hence, characterizing the resource requires careful investigations and providing high quality velocity data from measurement surveys is of great importance. In this thesis, measurements of flow velocities have been performed at three kinds of sites.A tidal site has been investigated for its resource potential in one of all of the numerous fjords in Norway. Measurements have been performed to map the spatial and temporal variability of the resource. Results show that currents in the order of 2 m/s are present in the center of the channel. Furthermore, the flow is highly bi-directional between ebb and flood flows. The site thus have potential for in-stream energy conversion. A model is proposed that predicts peak current speed from information on tidal range at the site. A corresponding model can be set up and implemented at other similar sites affected by tides, i.e. fjord inlets connecting the ocean to a fjord or a basin.A river site serves as an experimental site for a marine current energy converter that has been designed at Uppsala University and deployed in Dalälven, Söderfors. The flow rate at the site is regulated by an upstream hydrokinetic power plant nearby, making the site suitable for experiments on the performance of the vertical axis turbine in its natural environment. The turbine has been run in uniform flow and measurements have been performed to characterize the extent of the wake.An ocean current site was a target of investigation for its potential for providing utilizable renewable energy. A measurement campaign was conducted, mapping the flow both spatially and temporally. However, the site was shown to not be suitable for energy conversion using present technique.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)