Methods for Generation and Characterization of Monospecific Antibodies

Detta är en avhandling från Stockholm : KTH

Sammanfattning: Recent advances in biotechnology have generated possibilities to investigate and measure parts of life previously left for believers to explain. Utilizing the same book of recipes, the genome, our cells produce selections of proteins at a time and thereby niche into a multitude of specialized cell types, tissues and organs comprising our body. Knowledge of the precise protein composition in a given organ at normal and disease condition would be of invaluable importance, both for identification of disease causes and the design of new pharmaceuticals, as well as for a deeper understanding of the processes of life. This doctoral thesis describes the start and progress of a visionary project (HPR) to localize all human proteins in our body, with emphasis on the generation and characterization of antibodies used as protein targeting missiles. To facilitate the identification of one human protein in a complex environment like our body, it is of significant importance to have precise and specific means of detection. The first two papers (I-II), describe software developed for generation of monospecific antibodies satisfying such needs, using a set of rules for antigen optimization. Five years after project start a large amount of antibodies with documented characteristics have been generated. The third paper (III), illustrates an attempt to sieve these antibody characteristics to develop a tool, for further improvement of antigen selection, based on the correlation between antigen sequence and amount of specific antibody generated.Having a panel of protein-specific antibodies is a possession of a great value, not only for localization studies, but also as possible target-directed pharmaceuticals. In such cases, knowledge of the precise epitope recognized by the antibody on its target protein, is an important aid, both for understanding its effect as well as unwanted cross-reactivity. Paper (IV) describes the development of a high-resolution method for epitope mapping of antibodies using staphylococcal display. An application of the method is described in the last paper (V) where it is used to map an anti-HER2 monospecific antibody with growth-inhibiting effects on breast cancer cells. The monospecific antibody was fractionated into separate populations and five novel epitopes related to cancer cell growth-inhibition was determined.Altogether these methods are valuable tools for generation and characterization of monospecific antibodies.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)