Influence of deformation and environmental degradation of Inconel 792

Sammanfattning: Industrial gas turbines are often used as a mechanical drive for pumps and compressors or in power generation as an electric power supply. The gas turbine has for many years been a popular engine due to its flexibility with respect to different types of fuel and due to a design, that enables a high power-to-weight ratio. A simplified description of a gas turbine is that the engine consists of a cold and hot section. The turbo compressor section belongs to cold section and the combustion chamber together with the turbine section belongs to the hot section. In the hot section of a gas turbine, the condition is extremely severe because of an aggressive environment characterized by high temperatures, increased temperature gradients, high pressure and centrifugal forces resulting in large stresses on individual components together with an oxidizing and corroding atmosphere. Materials used in the high temperature section (hot gas path) of a modern gas turbine are different types of superalloys, as single crystal, directionally solidified or polycrystalline alloys, depending on temperature and load conditions. In the first turbine stage, temperature is very high due to exposure to the combustion gas. To handle the problem with creep, single crystal superalloys are often used in this section. In the second row of turbine blades, the temperature of the gas is lower and polycrystalline superalloys are typically used. IN-792 is a cast polycrystalline superalloy with high strength, good resistance to hot corrosion and a cheaper option than single crystals. In the hot section of gas turbine, IN-792 is a suitable material for components such as turbine blades and vans where a complex load condition, high temperature and severe environment prevails. Due to startup and shutdown of the gas turbine engine during service, the components in the hot section are exposed to cyclic load and temperature. This will generate mechanical and thermal fatigue damage in gas turbine components. Steady state temperature gradient arises by the cooling system acting at cold spots during service to introduce tensile stress, which indirectly gives rise to creep damage in the component. This work includes tree studies of deformation and damage mechanisms of superalloy IN-792. The first study is made on test bars exposed to thermomechanical fatigue in laboratory environment, the second and the third study is made on turbine blades used during service. In the second study, the machines are placed off-shore and exposed to marine environment. In the third study the machine is landbased and exposed to an industrial environment. In the second study, the deformation and damage mechanisms are compared between the turbine blades used during service and the test bars exposed to thermomechanical fatigue testing in the first study.

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.