Pulse and hold switching current readout of superconducting quantum circuits

Detta är en avhandling från Stockholm : KTH

Sammanfattning: Josephson junction qubits are promising candidates for a scalable quantum processor. Such qubits are commonly manipulated by means of sequences of rf-pulses and different methods are used to determine their quantum state. The readout should be able to distinguish the two qubit states with high accuracy and be faster than the relaxation time of the qubit. We discuss and experiment with a readout method based on the switching of a Josephson junction from the zero voltage state to a finite voltage state.The Josephson junction circuit has a non-linear dynamics and when it is brought to a bifurcation point, it can be made arbitrarily sensitive to small perturbations. This extreme sensitivity at a bifurcation point can be used to distinguish the two quantum states if the topology of the phase space of the circuit leads to a quick separation into the final states where re-crossings of the bifurcation point are negligible. We optimize a switching current detector by analyzing the phase space of a Josephson junction circuit with frequency dependent damping.A pulse and hold technique is used where an initial current pulse brings the junction close to its bifurcation point and the subsequent hold level is used to give the circuit enough time to evolve until the two states can be distinguished by the measuring instrument. We generate the pulse and hold waveform by a new technique where a voltage step with following linear voltage rise is applied to a bias capacitor. The frequency dependent damping is realized by an on-chip RC-environment fabricated with optical lithography. Josephson junction circuits are added on by means of e-beam lithography.Measurements show that switching currents can be detected with pulses as short as 5 ns and a resolution of 2.5% for a sample directly connected to the measurement leads of the cryostat. Detailed analysis of the switching currents in the RC-environment show that pulses with a duration of 20 us can be explained by a generalization of Kramers' escape theory, whereas switching the same sample with 25 ns pulses occurs out of thermal equilibrium, with sensitivity and speed adequate for qubit readout.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)