Association of hydrophobic organic compounds to organic material in the soil system

Detta är en avhandling från Umeå : Umeå Universitet

Sammanfattning: Contaminated soils and sediments have been identified as significant secondary sources of organic contaminants.  Leaching tests may be useful tools to estimate the mobility of contaminants via the water phase and thereby the risk for groundwater and surface water contamination. The influence of soil composition (peat and clay content) on the leachability was investigated in batch leaching experiments for chemically diverse hydrophobic organic compounds (HOCs: PCP, PAHs, HCB, HCHs, PCBs, and TCDD/Fs). The above mentioned compounds were analyzed by both GC-LRMS (gas chromatography coupled with low resolution mass spectrometry (GC-HRMS) and GC-HRMS (gas chromatography coupled with high resolution mass spectrometry). Also the the leachability of eleven selected PCBs from naturally aged soil (Västervik, Sweden) was investigated in relation to the composition and concentration of dissolved organic matter at different pH (2 to 9), using a pH static test with initial acid/base addition. The the composition and of dissolved organic matter (DOM) at different pH values was explored by FTIR spectroscopy. The results were evaluated by orthogonal projections to latent structures (OPLS).Generally, for all model compounds studies, the Kd-values showed a variability of 2-3 orders of magnitude depending on the matrix composition. The Kd-values of moderately hydrophobic compounds, (e.g. HCHs, PCP and Phe), were correlated mainly with the organic matter content of soil. For more hydrophobic compounds (e.g.BaA, HCB and PCB 47), the leachability decreased as the proportions of  OM and clay contents increased. The Kd-values of 1,3,6,8-TCDD and 1,3,6,8-TCDF were  positively correlated with peat content but negatively correlated with clay content, while for PCB 153 and PCB 155 the correlations were reversed. The log Kd-values of all target PCBs decreased with increased pH values and the log Kd-values were highly correlated with the concentration of total organic carbon (TOC) in the leachates. The FTIR analysis of DOM showed that the least chlorinated and hydrophobic PCB congeners (i.e. PCB 28) might be associated with the hydrophilic fraction (i.e. carboxylic groups) of DOM. Our study demonstrated how complex interaction between the organic matter, clay components, pH and DOC influences the leachability of HOCs in a compound-specific manner.