Inductively Coupled Plasma Spectrometry for Speciation Analysis Development and Applications

Detta är en avhandling från Uppsala : Acta Universitatis Upsaliensis

Sammanfattning: In analytical chemistry the main goal is normally to determine the identity and/or concentration of one or more species in a sample. The samples analyzed are often natural samples, containing numerous different species in a complex matrix and the choice of technique for multi-elemental detection is in general inductively coupled plasma spectrometry. The chemical forms of an element can affect many of its characteristics e.g. toxicity, which makes speciation analysis important. Therefore, determination of the identity and quantity of an element is still important, but for many applications measurements of total element concentration provides insufficient information. To be able to perform speciation analysis, separation, identification and/or characterization of the various forms of elements in the sample has to be accomplished. Speciation analysis has been employed in a wide range of disciplines, including for example environmental science, biology and clinical chemistry.This thesis describes work to improve and understand the elemental speciation analysis with liquid chromatography coupled to plasma spectrometry and also highlights the importance and potential of the synergy between atomic spectrometry and molecular mass spectrometry. The combination of the matrix tolerant, robust and very sensitive plasma spectrometry used together with molecular mass spectrometry, which provides structural information and the possibility to identify unknown species, is demonstrated to be a very powerful tool for speciation analysis. In this thesis methods are developed for on-line sample clean-up and pre-concentration coupled to liquid chromatography and plasma spectrometry, which makes handling of small sample volumes easier and also decreases the risk of contamination. The problems associated with organic modifiers in plasma spectrometry are also addressed. Applications of speciation analysis are exemplified by analysis of aluminium-chelated siderophores in field-soil solutions and organic phosphorous species in aquatic sediments. The possibility to analyze un-dissolved samples as slurries with minimal sample preparation is also discussed.