Evaluation of Biomarker Responses in Fish with Special Emphasis on Gill EROD Activity

Detta är en avhandling från Uppsala : Acta Universitatis Upsaliensis

Sammanfattning: Many chemicals present in the aquatic environment can interfere with physiological functions in fish. Exposure to chemicals can be revealed by the use of biomarkers. Induction of 7-ethoxyresorufin O-deethylase (EROD) activity is a commonly used biomarker for exposure to CYP1A inducers such as dioxins and polyaromatic hyrdrocarbons. Vitellogenin is a frequently used biomarker for estrogenic compounds in various fish species whereas a biomarker for androgens, spiggin, is only found in sticklebacks. The main objectives of this thesis were to evaluate gill EROD activity as a biomarker and the three-spined stickleback as a model species in ecotoxicological studies.EROD activities were measured in gill, liver and kidney in rainbow trout (Oncorhynchus mykiss) caged in urban areas in Sweden. EROD induction was most pronounced in the gill. Also in fish caged at reference sites, with an expected low level of known CYP1A inducers, a marked gill EROD induction was found. One suggested inducer in rural waters is humic substances (HS). To evaluate the EROD-inducing capacity of HS, three-spined sticklebacks (Gasterosteus aculeatus) were exposed to HS of natural or synthetic origin. Both kinds of HS caused significant EROD induction. Gill EROD activities were also induced in sticklebacks exposed to ethynylestradiol (EE2) and ?-naphthoflavone (?NF), alone and in combinations. Production of vitellogenin was induced in sticklebacks exposed to ?50 ng EE2/l and a significant decrease in spiggin production was observed in individuals exposed to 170 ng EE2/l.Results from this thesis further strengthen the contention that gill EROD activity is a very sensitive biomarker for CYP1A inducers and that the stickleback is a suitable biomonitoring species, especially for exposure to CYP1A inducers. The finding that not only classical CYP1A inducers but also HS and high EE2 concentrations stimulate gill EROD activity is of significance for the interpretation of biomonitoring data.