A Complete Model for Displacement Monitoring Based on Undifferenced GPS Observations

Detta är en avhandling från Stockholm : KTH

Sammanfattning: During recent years there has been a great focus on the climate changes within the media. More or less every day more newspaper articles are presented about the global warming issue and the effect on us human race. Climate models predict higher temperatures and more rain in the northern part of Europe. It is also predicted that the weather will become more extreme e.g. it will rain a lot during longer periods than has been the norm. If these predictions are correct, the amount of water that is going to be transported away in streams and rivers will increase and so also will the subsoil water level. The latter increases the risk for landslides in areas with fine grained soils. An early warning system that is able to alert people before a landslide take place would be of great interest.The purpose of this work is to develop a complete real-time displacement monitoring system based on observations from several GPS-receivers that could be used as an early warning system. Due to the complex correlation structure of the traditionally used double differences, an alternative method based on undifferenced observations is used. Theoretically this approach shows some advantages and simplifies the correlative structure of observables compared to the double differenced method. A complete model for the undifferenced approach is presented in this thesis including its software implementation.A displacement detection system includes not only the positioning algorithms, but also methods to detect if any displacement occurs. There are many methods available to discriminate displacements, which are used in the traditional control of manufacturing processes. Several of these methods are compared in this thesis, such as the Shewhart chart, different Weighted Moving Average (WMA) charts and the CUmulative SUMmation (CUSUM). Practical tests show that it is possible to detect an abrupt shift on sub centimetre level at the same epoch as the shift occurs. Smaller shifts are also detectable with the applied approach but with a slightly longer detection time.