Eco-designed functionalization of polyester fabric

Sammanfattning: There is an increased awareness of the textile dyeing and finishing sector’s high impact on the environment due to high water consumption, polluted wastewater, and inefficient use of energy. To reduce environmental impacts, researchers propose the use of dyes from natural sources. The purpose of using these is to impart new attributes to textiles without compromising on environmental sustainability. The attributes given to the textile can be color and/or other characteristics. A drawback however, is that the use of bio-sourced dyes is not free from environmental concerns. Thus, it becomes paramount to assess the environmental impacts from using them and improve the environmental profile, but studies on this topic are generally absent.The research presented in this thesis has included environmental impact assessment, using the life cycle assessment (LCA) tool, in the design process of a multifunctional polyester (PET) fabric using natural anthraquinones. By doing so an eco-design approach has been applied, with the intention to pave the way towards eco-sustainable bio-functionalization of textiles.The anthraquinones were obtained from the root extracts of the madder plant (Rubia tinctorum L.), referred to as madder dye. The research questions were therefore formulated related to the use of madder dye. Three research questions have been answered: (I) Can madder dye serve as a multifunctional species onto a PET woven fabric? (II) How does the environmental profile of the dyeing process of PET with madder dye look like, and how can it be improved? (III) What are the main challenges in using LCA to assess the environmental impacts of textile dyeing with plant-based dyes?It is concluded that there is a potential for the madder dye to serve as a multifunctional species onto PET. Based on the encouraging result, a recommendation for future work would be to focus on the durability of the functionalities presented and their improvement potential, both in exhaustion dyeing and pad-dyeing. LCA driven process optimization of the exhaustion dyeing enabled improvement in every impact category studied. However, several challenges have been identified which need to be overcome for the LCA to contribute to the sustainable use of multifunctional plant-based species in textile dyeing. The main challenges are the lack of available data at the research stage and the interdisciplinary nature of the research arena. It is envisaged that if these challenges are addressed, LCA can contribute towards sustainable bio-functionalization of textiles. 

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)