Interaction Characteristics of Viral Protease Targets and Inhibitors Perspectives for drug discovery and development of model systems

Detta är en avhandling från Uppsala : Acta Universitatis Upsaliensis

Sammanfattning: Viral proteases are important targets for anti-viral drugs. Discovery of protease inhibitors as anti-viral drugs is aided by an understanding of the interactions between viral protease and inhibitors. This thesis addresses the characterization of protease-inhibitor interactions for application to drug discovery and model system development.The choice of a relevant target is essential to molecular interaction studies. Therefore, full-length NS3 protein of hepatitis C virus (HCV) was obtained, providing a more relevant target and a better model for the development of HCV protease inhibitors. In addition, resistance to anti-viral drugs, a serious problem in the treatment of AIDS, prompted the investigation of resistant variants of human immunodeficiency virus (HIV) protease.Drug resistance was initially explored by characterization of the interactions between a series of closely related inhibitors and resistant variants of HIV protease, using an inhibition assay to determine the inhibition dissociation constants (Ki). The relationship between structure, activity and resistance profiles was not clarified, indicating that the effect of structural changes in the inhibitors and the protease are not predictable and must be analyzed case wise. It was proposed that additional kinetic characterization of the interactions was required and a biosensor-based method allowing for determination of affinity, KD, and interaction rate constants, kon and koff, was adopted. The increased physiological relevance of this method was confirmed, and the affinity data have better correlation with cell culture data. In addition, interactions between clinical inhibitors of HIV protease and enzyme variants indicate that increased dissociation rates (koff) are associated with the development of resistance.Thermodynamic characterization of the interactions between HIV-1 protease and clinically relevant inhibitors revealed distinct energetic characteristics for inhibitors. The resolution of the energetics of association and dissociation identified an inhibitor with unique interaction characteristics and confirmed the validity of using this method for further characterization of molecular interactions.This work resulted in the development of model systems for the analysis of kinetics, resistance and thermodynamic characteristics of protein-inhibitor interactions. The results give increased understanding of the biomolecular interactions and can be applied to drug discovery.