On some continuous-time modeling and estimation problems for control and communication

Detta är en avhandling från Karlstad : Karlstads universitet

Sammanfattning: The scope of the thesis is to estimate the parameters of continuous-time models used within control and communication from sampled data with high accuracy and in a computationally efficient way.In the thesis, continuous-time models of systems controlled in a networked environment, errors-in-variables systems, stochastic closed-loop systems, and wireless channels are considered. The parameters of a transfer function based model for the process in a networked control system are estimated by a covariance function based approach relying upon the second order statistical properties of input and output signals. Some other approaches for estimating the parameters of continuous-time models for processes in networked environments are also considered. The multiple input multiple output errors-in-variables problem is solved by means of a covariance matching algorithm. An analysis of a covariance matching method for single input single output errors-in-variables system identification is also presented. The parameters of continuous-time autoregressive exogenous models are estimated from closed-loop filtered data, where the controllers in the closed-loop are of proportional and proportional integral type, and where the closed-loop also contains a time-delay. A stochastic differential equation is derived for Jakes's wireless channel model, describing the dynamics of a scattered electric field with the moving receiver incorporating a Doppler shift.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)