Expression and function of Suppressor of zeste 12 in Drosophila melanogaster

Detta är en avhandling från Umeå University

Sammanfattning: The development of animals and plants needs a higher order of regulation of gene expression to maintain proper cell state. The mechanisms that control what, when and where a gene should (or should not) be expressed are essential for correct organism development. The Polycomb group (PcG) is a family of genes responsible for maintaining gene silencing and Suppressor of zeste 12 (Su(z)12) is one of the core components in the PcG. The gene is highly conserved in organisms ranging from plants to humans, however, the specific function is not well known. The main tasks of this thesis was to investigate the function of Su(z)12 and its expression at different stages of Drosophila development.In polytene chromosomes of larval salivary glands, Su(z)12 binds to about 90 specific euchromatic sites. The binding along the chromosome arms is mostly in interbands, which are the most DNA de-condensed regions. The binding sites of Su(z)12 in polytene chromosomes correlate precisely with those of the Enhancer-of-zeste (E(z)) protein, indicating that Su(z)12 mainly exists within the Polycomb Repressive Complex 2 (PRC2). However, the binding pattern does not overlap well with Histone 3 lysine 27 tri-methylations (H3K27me3), the specific chromatin mark created by PRC2. The Su(z)12 binding to chromatin is dynamically regulated during mitotic and meiotic cell division. The two different Su(z)12 isoforms: Su(z)12-A and Su(z)12-B (resulting from alternative RNA splicing), have very different expression patterns during development. Functional analyses indicate that they also have different functions he Su(z)12-B form is the main mediator of silencing. Furthermore, a neuron specific localization pattern in larval brain and a giant larval phenotype in transgenic lines reveal a potential function of Su(z)12-A in neuron development.  In some aspects the isoforms seem to be able to substitute for each other.The histone methyltransferase activity of PRC2 is due to the E(z) protein. However, Su(z)12 is also necessary for H3K27me3 methylation in vivo, and it is thus a core component of PRC2. Clonal over-expression of Su(z)12 in imaginal wing discs results in an increased H3K27me3 activity, indicating that Su(z)12 is a limiting factor for silencing. When PcG function is lost, target genes normally become de-repressed. The segment polarity gene engrailed, encoding a transcription factor, is a target for PRC2 silencing. However, we found that it was not activated when PRC2 function was deleted. We show that the Ultrabithorax protein, encoded by another PcG target gene, also acts as an inhibitor of engrailed and that de-regulation of this gene causes a continued repression of engrailed. The conclusion is that a gene can have several negative regulators working in parallel and that secondary effects have to be taken into consideration, when analyzing effects of mutants.PcG silencing affects very many cellular processes and a large quantity of knowledge is gathered on the overall mechanisms of PcG regulation. However, little is known about how individual genes are silenced and how cells “remember” their fate through cell generations.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)