Hidden biodiversity in an alpine freshwater top predator : Existence, characteristics, and temporal dynamics of cryptic, sympatric brown trout populations

Sammanfattning: Intraspecific genetic diversity is imperative to the survival of species in a changing environment, and it plays a vital role in ecosystem function. Since this type of diversity can be difficult to detect it is sometimes referred to as “hidden biodiversity”. When separate and genetically distinct populations of the same species coexist within the same habitat, without apparent barriers to migration and obvious phenotypic divergence, this form of hidden biodiversity is called cryptic sympatry. Knowledge of cryptic sympatry is limited, however, and the aim of this thesis is to increase our understanding of this phenomenon by focusing on a species group where several cases of sympatry have been documented – the salmonids.Using the brown trout (Salmo trutta) as a model, I characterized two previously reported cases of cryptic sympatry occurring in small Swedish alpine lakes with respect to both phenotypic and genetic characteristics. I explored the hypothesis that cryptic sympatry is more common than currently recognized by reviewing literature documenting sympatry, as well as by assessing the statistical power to detect sympatric populations with varying degrees of divergence using commonly applied sample sizes for loci and individuals. Further, I performed a large-scale search for sympatric populations in alpine lakes in central Sweden.I found that cryptic, sympatric populations can coexist while apparently utilizing the same food resources and exhibiting the same adaptive plasticity to their shared environment (Paper I). In one of the empirical cases there were indications that the populations used different creeks for spawning, suggesting that segregation in spawning location contributes to the maintenance of sympatry (Paper II). Further, I found that differences between cryptic, sympatric populations of the same lake may be large with respect to levels of genetic diversity, inbreeding, and connectivity with populations in nearby lakes (Papers II and III). I found support for the hypothesis that cryptic sympatry is more common than generally acknowledged (Papers IV and V). In the literature, cryptic sympatry is rarely reported and typically associated with higher divergence levels than between sympatric populations that differ phenotypically. My results suggest that this to a large extent may be due to limited statistical power when commonly used sample sizes in terms of individuals and loci are applied and the amount of divergence between populations is small (Paper IV). Cryptic sympatry was observed in over 40% of the screened localities (27 lakes), and was shown to be temporally stable over at least 40 years (Paper V).

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)