Introducing weak affinity chromatography to drug discovery with focus on fragment screening

Detta är en avhandling från Växjö : Linnaeus University Press

Sammanfattning: Fragment-based drug discovery is an emerging process that has gained popularity in recent years. The process starts from small molecules called fragments. One major step in fragment-based drug discovery is fragment screening, which is a strategy to screen libraries of small molecules to find hits. The strategy in theory is more efficient than traditional high-throughput screening that works with larger molecules. As fragments intrinsically possess weak affinity to a target, detection techniques of high sensitivity to affinity are required for fragment screening. Furthermore, the use of different screening methods is necessary to improve the likelihood of success in finding suitable fragments. Since no single method can work for all types of screening, there is a demand for new techniques. The aim of this thesis is to introduce weak affinity chromatography (WAC) as a novel technique for fragment screening.WAC is, as the name suggests, an affinity-based liquid chromatographic technique that separates compounds based on their different weak affinities to an immobilized target. The higher affinity a compound has towards the target, the longer it remains in the separation unit, and this will be expressed as a longer retention time. The affinity measure and ranking of affinity can be achieved by processing the obtained retention times of analyzed compounds.In this thesis, WAC is studied for fragment screening on two platforms. The first system comprised a 24-channel affinity cartridge that works in cooperation with an eight-needle autosampler and 24 parallel UV detector units. The second system was a standard analytical LC-MS platform that is connected to an affinity column, generally called WAC-MS or affinity LC-MS. The evaluation criteria in studying WAC for fragment screening using these platforms were throughput, affinity determination and ranking, specificity, operational platform characteristics and consumption of target protein and sample. The model target proteins were bovine serum albumin for the first platform, thrombin and trypsin for the latter. Screened fragments were either small molecule drugs, a thrombin-directed collection of compounds, or a general-purpose fragment library. To evaluate WAC for early stages of fragment elaboration, diastereomeric mixtures from a thrombin-directed synthesis project were screened.Although both analytical platforms can be used for fragment screening, WAC-MS shows more useful features due to easy access to the screening platform, higher throughput and ability to analyze mixtures. Affinity data from WAC are in good correlation with IC50 values from enzyme assay experiments. The possibility to distinguish specific from non- specific interactions plays an important role in the interpretation of WAC results. In this thesis, this was achieved by inhibiting the active site of the target protein to measure off-site interactions. WAC proves to be a sensitive, robust, moderate in cost and easy to access technique for fragment screening, and can also be useful in the early stages of fragment evolution.In conclusion, this thesis has demonstrated the proof of principle of using WAC as a new tool to monitor affinity and to select hits in fragment-based drug discovery. This thesis has indicated the primary possibilities, advantages as well as the limitations of WAC in fragment screening procedures.  In the future, WAC should be evaluated on other targets and fragment libraries in order to realize more fully the potential of the technology.

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.