Sulphide mineral flotation : a new insight into oxidation mechanisms

Sammanfattning: Formation of hydrogen peroxide (H2O2), an oxidizing agent stronger than oxygen, by sulphide minerals during grinding was investigated. It was found that pyrite (FeS2), chalcopyrite (CuFeS2), sphalerite ((Zn,Fe)S), and galena (PbS), which are the most abundant sulphide minerals on Earth, generated H2O2 in pulp liquid during wet grinding in the presence or devoid of dissolved oxygen in water and also when the freshly ground solids are placed in water immediately after dry grinding. Pyrite generated more H2O2 than other sulphide minerals and the order of H2O2 production by the minerals found to be pyrite > chalcopyrite > sphalerite > galena. The pH of water influenced the extent of hydrogen peroxide formation where higher amounts of H2O2 are produced at highly acidic pH. The amount of H2O2 formed also increased with increasing sulphide mineral loading and grinding time due to increased surface area and its interaction with water. The sulphide surfaces are highly catalytically active due to surface defect sites and unsaturation because of broken bonds and capable of breaking down the water molecule leading to hydroxyl free radicals. Type of grinding medium on formation of hydrogen peroxide by pyrite revealed that the mild steel produced more H2O2 than stainless steel grinding medium, where Fe2+ and/or Fe3+ ions played a key role in producing higher amounts of H2O2.Furthermore, the effect of mixed sulphide minerals, i.e., pyrite–chalcopyrite, pyrite–galena, chalcopyrite–galena and sphalerite–pyrite, sphalerite–chalcopyrite and sphalerite–galena on the formation of H2O2 showed increasing H2O2 formation with increasing pyrite fraction in chalcopyrite–pyrite composition. In pyrite–sphalerite, chalcopyrite–sphalerite or galena–sphalerite mixed compositions, the increase in pyrite or chalcopyrite proportion, the concentration of H2O2 increased but with increase in galena proportion, the concentration of H2O2 decreased. Increasing pyrite proportion in pyrite–galena mixture, the concentration of H2O2 increased and also in the mixture of chalcopyrite–galena, the concentration of H2O2 increased with increasing chalcopyrite fraction. The results of H2O2 formation in pulp liquid of sulphide minerals and mixed minerals at different experimental conditions have been explained by Eh–pH diagrams of these minerals and the existence of free metal ions that are equally responsible for H2O2 formation besides surfaces catalytic activity. The results also corroborate the amount of H2O2 production with the rest potential of the sulphide minerals; higher is the rest potential more is the formation of H2O2. Most likely H2O2 is answerable for the oxidation of sulphide minerals and dissolution of non-ferrous metal sulphides in the presence of ferrous sulphide besides the galvanic interactions. This study highlights the necessity of revisiting into the electrochemical and/or galvanic interactions between the grinding medium and sulphide minerals, and interaction mechanisms between pyrite and other sulphide minerals in terms of their flotation behaviour in the context of inevitable H2O2 existence in the pulp liquid.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)