Controlled Polymer Grafting from Nanoparticles for the Design of Dielectric Nanocomposites

Detta är en avhandling från Stockholm : KTH Royal Institute of Technology

Sammanfattning: The interest for polymeric nanocomposites has rapidly grown during the last decades, fuelled by the great potential and superior properties of nanoparticles (NPs). The production volumes of commercial NPs have increased exponentially during the last ten years, and the quality has been significantly improved. The aim of this study was to design polymer grafted commercially available metal-oxide NPs, and graphene oxide (GO), to develop isotropic (homogeneous) and anisotropic (heterogeneous) polymer nanocomposites for dielectric applications. The motivation was to formulate functional insulation materials for compact components in future power-grid systems using high-voltage direct-current (HVDC) or high-voltage alternating-current (HVAC), and to fabricate responsive sensor materials for monitoring e.g. temperature and voltage fluctuations in so called “Smart Grids”.Aluminium oxide (Al2O3), zinc oxide (ZnO) and reduced GO (rGO) NPs were modified with sparse polymer grafts via a controlled “covalent route” and were mixed with silicone (PDMS) or polyethylene matrices (EBA and LDPE) commonly used in HV-cable systems. The graft length and the graft-to-matrix compatibility were tailored to obtain nanocomposites with various self-assembled NP-morphologies, including well-dispersed, connected and phase-separated structures. The graft length was used to adjust the inter-particle distance of nanocomposites with continuous morphologies or connected (percolated) NPs. It was found that nanocomposites with percolated NPs and short inter-particle distances exhibited 10-100 times higher conductivity than the unfilled (neat) polymer, or displayed a rapid non-linear increase in conductivity (~1 million times) with increasingelectric field, while well-dispersed NPs with long inter-particle distances exhibited 10-100 times lower conductivity (i.e. higher resistivity) as an effect of their trapping of charge carriers. These tunable and functional properties are desirable for HV-insulation, field-grading applications, and flexible electronics.In addition it was shown that GO modified with dense polymer grafts via a “physisorption route” formed suspensions with liquid crystals, or matrix-free GO-composites with well-dispersed GO in isotropic or nematic states. These materials were reinforced by the GO, and exhibited elevated glass transition temperatures and a rapid thermo-responsive shape-memory effect, and are thus proposed to have a great potential as sensor materials and responsive separation membranes.

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.