On the inception and propagation of streamers along mineral-oil/solid interfaces

Detta är en avhandling från KTH Royal Institute of Technology

Sammanfattning: This thesis presents an experimental study of positive and negativestreamers propagating along mineral-oil/solid interfaces under square highvoltage pulses. The thesis includes the design and construction of anexperimental setup to studying the streamers in a point-plane configurationcapable to detect streamer parameters such as velocity, length, propagationtime, emitted light and charge.The first part of this experimental study is devoted to the analysis of thestreamer inception at mineral-oil/solid interfaces under negative polarity. Thestreamer inception voltage and charge recordings are reported for eachmineral-oil/solid interface. It is found that only solids with a permittivitysimilar to that of mineral oil can influence the streamer inception voltage.Solids with matched permittivity such as LDPE and PTFE increase the inceptionvoltage. The cases with solids with higher permittivity than mineral oil havesimilar inception voltage as the streamer incepted in the liquid bulk withoutsolid. The second part is devoted to studying the propagation of first mode negativestreamers along different mineral-oil/solid interfaces. A comparison of theelectrical and physical properties of the streamers (e.g. charge, length,velocity, etc.) is presented. Solid samples with different chemical compositionand different physical properties are used. The solid samples are anoil-impregnated kraft paper and an low-porosity paper referred to as kraftfibril paper made from cellulosic micro and nano fibrils. Polymeric films madeof low density polyethylene (LDPE), polyethylene terephthalate (PET),polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) are also usedas the solid. Streamers propagating along the liquid/solid interface arecompared with streamers developing in mineral oil without solid. Streamerspropagate longer and faster along solids with low surface roughness, lowporosity and higher electrical permittivity than mineral oil showing aquasi-continuous injection of charge in the early stage of propagation.The third part of the experimental study deals with second mode positivestreamers propagating along mineral-oil/solid interfaces. The inception andpropagation of the streamer are investigated using different mineral-oil/solidinterfaces. Measurements of the streamer velocity, charge, stopping length,propagation time, together with light recordings and shadowgraphs are reported.It is found that the interface can influence the streamer inception voltage,branching, stopping length, velocity, charge and current. Properties of thesolid and of the interface (i.e. surface roughness, permittivity, wettability)are parameters that influence the streamer propagation.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)