Mass-spectrometry based survey of BMAA sources, distribution and transfer

Sammanfattning: β-methylaminoalanine (BMAA) is a neurotoxic non-protein amino acid first isolated from cycad seeds in 1967. It is believed to be connected to neurodegenerative diseases such as Parkinson’s, Alzheimer’s and amyotrophic lateral sclerosis (ALS) and is a ubiquitous compound produced by cyanobacteria, diatoms and dinoflagellates. Consequently, elucidating natural production, distribution and routes for human exposure of BMAA are of particular importance. However, the natural function of BMAA and its mechanisms of toxicity have not been fully established yet. The contradictory results about BMAA presence in cyanobacterial cultures and food webs have been reported by different scientific groups, which required the development of more sensitive and reliable analytical methods. This thesis is focused on the analytical chemistry dimension of BMAA research: covering both new method development and novel applications. New analytical methods for BMAA detection and quantification were developed, focusing on improving sensitivity, since BMAA is normally found in natural samples at low concentrations. In Paper I, a new derivatization technique was implemented, which increased sensitivity and selectivity in the analysis of BMAA and its isomers. Subsequently, this developed method was applied to determine the presence of BMAA in fat and oil matrices in Paper II, which is a step towards discovering BMAA forms other than the documented free and protein-bound BMAA species. In Paper III, a method for separation and quantification of L- and D-BMAA stereoisomers in complex biological matrix was developed and applied to determine the enantiomeric composition of BMAA in cycad seed. Studying environmental distribution of BMAA is important to evaluate potential exposure routes and health risks for humans. Part of the work was devoted to broaden assessment on environmental occurrence of BMAA by applying existing robust methodology to new samples, such as commercial seafood in Paper IV and Baltic Sea biota in Paper V. Some of the “overlooked” aspects in the existing BMAA literature (i.e., BMAA chiral analysis, possible BMAA presence in dietary oil supplements and defined food webs) were successfully addressed. Overall, the thesis presents important analytical developments, which can help to further elucidate sources, distribution and transfer of BMAA.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)