A Mutation-based Framework for Automated Testing of Timeliness

Detta är en avhandling från Institutionen för datavetenskap

Sammanfattning: A problem when testing timeliness of event-triggered real-time systems is that response times depend on the execution order of concurrent tasks. Conventional testing methods ignore task interleaving and timing and thus do not help determine which execution orders need to be exercised to gain confidence in temporal correctness. This thesis presents and evaluates a framework for testing of timeliness that is based on mutation testing theory. The framework includes two complementary approaches for mutation-based test case generation, testing criteria for timeliness, and tools for automating the test case generation process. A scheme for automated test case execution is also defined. The testing framework assumes that a structured notation is used to model the real-time applications and their execution environment. This real-time system model is subsequently mutated by operators that mimic potential errors that may lead to timeliness failures. Each mutated model is automatically analyzed to generate test cases that target execution orders that are likely to lead to timeliness failures. The validation of the theory and methods in the proposed testing framework is done iteratively through case-studies, experiments and proof-of-concept implementations. This research indicates that an adapted form of mutation-based testing can be used for effective and automated testing of timeliness and, thus, for increasing the confidence level in real-time systems that are designed according to the event-triggered paradigm.