Thermal components in the early X-ray afterglow of gamma-ray bursts

Sammanfattning: Gamma-ray bursts (GRBs) are still puzzling scientists even 40 years after their discovery. Questions concerning the nature of the progenitors, the connection with supernovae and the origin of the high-energy emission are still lacking clear answers. Today, it is known that there are two populations of GRBs: short and long. It is also known that long GRBs are connected to supernovae (SNe). The emission observed from GRBs can be divided into two phases: the prompt emission and the afterglow. This thesis presents spectral analysis of the early X-ray afterglow of GRBs observed by the {\it Swift} satellite. For the majority of GRBs the early X-ray afterglows are well described by an absorbed power-law model. However, there exists a number of cases where this power-law component fails in fully describing the observed spectra and an additional blackbody component is needed. In the paper at the end of this thesis, a time-resolved spectral analysis of 74 GRBs observed by the X-ray telescope on board {\it Swift} is presented. Each spectrum is fitted with a power-law and a power-law plus blackbody model. The significance of the added thermal component is then assessed using Monte Carlo simulations. Six new cases of GRBs with thermal components in their spectra are presented, alongside three previously reported cases. The results show that a cocoon surrounding the jet is the most likely explanation for the thermal emission observed in the majority of GRBs. In addition, the observed narrow span in radii points to these GRBs being produced in similar environments.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)