Influenza neuraminidase assembly : Evolution of domain cooperativity

Sammanfattning: Influenza A virus (IAV) is one of the most common viruses circulating in the human population and is responsible for seasonal epidemics that affect millions of individuals worldwide. The need to develop new drugs and vaccines against IAVs led scientists to study the main IAV surface antigens hemagglutinin (HA) and neuraminidase (NA). In contrast to HA, which facilitates cell binding and entry of IAVs, NA plays a critical role in the release and spreading of the viral particles.The aim of this thesis was to study how the enzymatic head domain, the stalk and transmembrane domains have evolved to facilitate NA assembly into an enzymatically active homotetramer, and to determine how these regions have evolved together over time. Initially, we observed that the NA transmembrane domain (TMD) assists in the assembly of the head domain by tethering the stalk to the membrane in a tetrameric conformation. Upon examination of the available sequences for NA, we found that the subtype 1 (N1) TMDs have become more polar since 1918 while the subtype 2 (N2) TMDs have consistently retained the expected hydrophobicity of a TMD. Further analysis of the amino-acid sequences revealed a characteristic indicative of an amphipathic assembly for the N1 TMDs that were absent in the TMDs from N2. The function of the amphipathic assembly was examined by creating two viral chimeras, where the original TMD was replaced by another more polar or an engineered hydrophobic TMD. In both cases the viruses carrying the NA TMD chimeras showed reduced growth indicating that the TMD changes created an incompatibility with the head domain of NA. After prolonged passaging of these viruses, natural occurring mutations were observed in the TMD that were able to rescue the defects in viral growth, head domain folding and budding by creating a TMD with the appropriate polar or hydrophobic assembly properties. Interestingly, we observed that N1 and N2 have a great difference in the localization and length of amino-acid deletions occurring in the stalk region. In line with this observation, our data suggests that N1 supports large stalk deletions due to its strong TMD association, whereas N2 requires the presence of a strong oligomerizing stalk region to compensate for its weak TMD interaction. These results have demonstrated how important the NA TMD is for viral infectivity and how the three different domains have evolved in a cooperative manner to promote proper NA assembly

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)