Dynamic Sulfur Chemistry : Screening, Evaluation and Catalysis

Sammanfattning: This thesis deals with the design, formation and evaluation of dynamic systems constructed by means of sulfur-containing reversible reactions, in organic and aqueous media and under mild conditions. In a first part, the synthesis of thioglycoside derivatives, constituting the biologically relevant starting components of the dynamic systems, is described. In addition, the pD-profile of the mutarotation process in aqueous media for a series of 1-thioaldoses is reported and revealed an astonishing beta-anomeric preference for all the carbohydrate analogs under acidic or neutral conditions. In a second part, the phosphine-catalyzed or -mediated disulfide metathesis for dynamic system generation in organic or aqueous media is presented, respectively. The direct in situ 1H STD-NMR resolution of a dynamic carbohydrate system in the presence of a target protein (Concanavalin A) proved the suitability and compatibility of such disulfide metathesis protocols for the discovery of biologically relevant ligands. In a third part, hemithioacetal formation is demonstrated as a new and efficient reversible reaction for the spontaneous generation of a dynamic system, despite a virtual character of the component associations in basic aqueous media. The direct in situ 1H STD-NMR identification of the best dynamic beta-galactosidase inhibitors from the dynamic HTA system was performed and the results were confirmed by inhibition studies. Thus, the HTA product formed from the reaction between 1-thiogalactopyranose and a pyridine carboxaldehyde derivative provided the best dynamic inhibitor. In a fourth and final part, a dynamic drug design strategy, where the best inhibitors from the aforementioned dynamic HTA system were used as model for the design of non-dynamic (or “static”) beta-galactosidase inhibitors, is depicted. Inhibition studies disclosed potent leads among the set of ligands.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)