An electrostatic sampling device for point-of-care detection of bioaerosols

Sammanfattning: Bioaerosols are not only a significant factor of air quality but contribute greatly to the spread of infectious diseases, specifically through expired pathogen-laden aerosols. Clear examples of airborne transmission include: the recent influenza pandemic of 2009, the ongoing tuberculosis epidemic, and yearly norovirus out- breaks, which affect millions of people worldwide and pose serious threats to public healthcare systems. Given these acute concerns and the critical lack of knowledge of the field, it is important to develop methods for sampling and detecting these air- borne pathogens. Specifically, detection at the point-of-care can play an important role in improving the outcome of patient care by providing rapid and convenient diagnostics.Electrostatic precipitation has emerged as a promising sampling tool for bio- aerosols, which together with a rapid analysis technique, can provide a powerful and integrated approach to pathogen detection or disease diagnosis at the point- of-care. Moreover, such a sampling-detection scheme could be a potentialy non- invasive breath sampling tool for diagnosis of respiratory infectious diseases.This thesis presents a sampling device based on electrostatic precipitation, for capture of bioaerosols, and designed for use at point-of-care settings. A multi-point- to-plane electrode configuration allows charging of aerosol particles and direct air- to-liquid capture within a miniaturized volume with potentential for concatenation with on-site detection methods. Performance of the device was evaluated, using non-biological aerosols, for geometric (inter-electrode distance), electrical (inter- electrode potential and corona current), and aerosol parameters (particle size and gas velocity). Moreover, four different collector designs were investigated for im- proved collection efficiency and other features suitable for point-of-care settings (e.g. easy sample extraction and minimized volume).The device was then validated, using bioaerosols, both in vitro and in vivo. In vitro validation was performed by capturing aerosolized influenza virus and analyz- ing the device collection efficiency. Lastly, prototype devices, designed for point- of-care, were validated in vivo with patients at the clinical setting. A pilot study was performed to capture exhaled pathogens from infected patients, with success- ful capture of exhaled bacteria.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)