Ensemble and Individual III-V Semiconductor Nanopillars: Optical Properties and Applications

Sammanfattning: Optical properties of semiconductor nanowires (NWs)/nanopillars (NPs), as individual or ensemble, have attracted significant research interest in recent years. Their potential applications range from solid-state lighting, photovoltaics, lasing and nonlinear optics to sensing and life sciences. Many of III-V NWs/NPs are particularly interesting for optoelectronic and photovoltaic applications, because of their direct band gap, high refractive index and superior electrical properties. These properties are beneficial for use in next generation solar cells by reducing the active cell thickness, while maintaining high efficiency. Furthermore, high second order nonlinearity coefficients of many III-V materials, for example GaAs and GaP, enhanced electric fields and tight confinement of optical modes make nanowaveguide geometries ideal for nonlinear effects.The focus of this thesis is on the fabrication of III-V NPs, their optical properties and applications. Different methods for fabrication of NPs (top-down approach) are proposed. The fabricated NPs show a broadband suppression of reflectance, which is particularly an interesting feature for photovoltaic applications. The effect of the shape and geometry of GaAs NPs on their reflectance spectra is investigated and the experimental data show a very good agreement with the simulations. In order to decrease surface recombination in the fabricated GaAs NPs, a sulfur-based chemical passivation method was used, resulting in the recovery of photoluminescence (PL) linewidth and enhancing the PL intensity for more than an order of magnitude. Moreover, a unique wafer-scale self-organization process for generation of InP NPs is demonstrated. As a proof of concept, the self-organized InP NPs were used to fabricate solar cell devices. For fabrication of InP NP solar cells, epitaxial overgrowth of NPs arrays was used to realize p-n junctions. A significant increase in the open circuit voltage (0.13 V) of the NP solar cell was obtained after surface passivation.Second-harmonic generation (SHG) was experimentally observed from GaP NP waveguides (single and in arrays) with vertical geometry. The generated second- harmonic light was analyzed with respect to the size of the NP waveguides and the corresponding effects of surface and bulk nonlinearities. In case of individual NPs, SHG was analyzed considering different modal excitations in GaP NPs. It was demonstrated that by varying the NP diameter and changing the pump polarization, it is possible to alter the field distribution of the radiated SHG light. The importance of tight confinement of the pump in the NP waveguides and consequently the longitudinal component of the electric field in this geometry is shown. A method was proposed to distinguish between surface and bulk contributions in SHG, which also addressed how to employ surface SHG to enhance the generated light. The proposed method was used to estimate the nonlinear coefficient and the effective thickness of the nonlinear region at the surface of GaP NP waveguides. Based on these findings, the corresponding nonlinear coefficient at the surface is estimated to be approximately 15 times higher, compared to the bulk. These findings, suggest that NPs/NWs (in this case GaP NPs) are potential alternatives for future nonlinear nanophotonic devices. Additionally, the SHG light from single GaP NPs are promising candidates for ultrafast light sources at nanoscopic scale, with potential applications in sensing, bio and single cell/ molecular imaging.