Theoretical and Experimental Studies of Electrode and Electrolyte Processes in Industrial Electrosynthesis

Detta är en avhandling från Stockholm : KTH Royal Institute of Technology

Sammanfattning: Heterogeneous electrocatalysis is the usage of solid materials to decrease the amount of energy needed to produce chemicals using electricity. It is of core importance for modern life, as it enables production of chemicals, such as chlorine gas and sodium chlorate, needed for e.g. materials and pharmaceuticals production. Furthermore, as the need to make a transition to usage of renewable energy sources is growing, the importance for electrocatalysis used for electrolytic production of clean fuels, such as hydrogen, is rising. In this thesis, work aimed at understanding and improving electrocatalysts used for these purposes is presented.A main part of the work has been focused on the selectivity between chlorine gas, or sodium chlorate formation, and parasitic oxygen evolution. An activation of anode surface Ti cations by nearby Ru cations is suggested as a reason for the high chlorine selectivity of the “dimensionally stable anode” (DSA), the standard anode used in industrial chlorine and sodium chlorate production. Furthermore, theoretical methods have been used to screen for dopants that can be used to improve the activity and selectivity of DSA, and several promising candidates have been found. Moreover, the connection between the rate of chlorate formation and the rate of parasitic oxygen evolution, as well as the possible catalytic effects of electrolyte contaminants on parasitic oxygen evolution in the chlorate process, have been studied experimentally.Additionally, the properties of a Co-doped DSA have been studied, and it is found that the doping makes the electrode more active for hydrogen evolution. Finally, the hydrogen evolution reaction on both RuO2 and the noble-metal-free electrocatalyst material MoS2 has been studied using a combination of experimental and theoretically calculated X-ray photoelectron chemical shifts. In this way, insight into structural changes accompanying hydrogen evolution on these materials is obtained.

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.