Advanced nano- and microdomain engineering of Rb-doped KTiOPO4 for nonlinear optical applications

Detta är en avhandling från KTH Royal Institute of Technology

Sammanfattning: Fine-pitch ferroelectric domain gratings are extensively used for generation of light in the visible and near-infrared spectral regions through quasi-phase matched (QPM) frequency conversion. Sub-μm QPM devices enables demonstration of nonlinear optics with counterpropagating waves, a field of nonlinear optics which remains sparsely explored due to the difficulty of fabricatinghigh quality gratings.In recent years, bulk Rb-doped KTiOPO4 (RKTP) has emerged as a highly promising nonlinear materials for fabrication of fine-pitch QPM devices through periodic electric-field poling. RKTP possesses large optical nonlinearity and high resistance to optical damage, while demonstrating improved material homogeneity and lower ionic conductivity than its isomorphs, which are important features for poling. Although fine-pitch QPM gratings, as well as large aperture QPM devices, have been demonstrated, fabrication of sub-μm high quality QPM devices remains a challenge.The primary aim of this research was to develop a reliable method to fabricate high-quality sub-μm periodically poled RKTP crystals (PPRKTP) and exploit them in novel optical applications. For this purpose, a novel poling method was developed. It was based on periodic modulation of the coercive field through ion exchange, where K+ ions are exchanged with Rb+ in the crystal, to modulate the coercive field and the ionic conductivity. This enables periodic poling of higher quality and with shorter period than ever before.High quality PPRKTP with a period of 755 nm were fabricated and used to demonstrate the first cascaded mirrorless optical parametric oscillator (MOPO), as well as the first MOPO pumped by a Q-switched laser. PPRKTP samples for blue light generation were fabricated, and second harmonic generation (SHG) was investigated with a high power 946 nm fiber laser. Up to 2 W of blue power was demonstrated for bulk samples, where the output power was limited by absorption of the SHG, leading to thermal dephasing of the devices. Laser-written waveguides were fabricated in PPRKTP for the first time, and a record high SHG power of 76 mW was obtained.Finally, the high-temperature stability of ferroelectric domain gratings was investigated. This is of utmost importance when a PPRKTP crystal is used as a seed for crystal growth. It was found that for charged domains walls, the domain-wall motion was highly anisotropic with rapid movement in y-direction while only small movements were observed in the x-direction of the crystal.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)