Designing Quinone-based Organic Batteries

Sammanfattning: The demand for secondary energy storage is ever increasing, being at the forefront of the transformation to a sustainable society. Conventional batteries, whose electrode materials require mining and high temperature refining, generate substantial carbon dioxide emissions during production. Furthermore, the process for recycling of these batteries is difficult and still at in its infancy. On the contrary, organic batteries could be a sustainable and alternative energy storage solution and is therefore gaining increased attention. While there are several promising organic battery concepts, the focus in of this thesis has been towards batteries using quinones as capacity carrying units. Furthermore, a special emphasis was put on conducting polymers for providing conductivity within the electrode material, predominately in the form of conducting redox polymers. Several battery designs have been explored. All-organic batteries, cycling protons both with an ionic liquid and with a readily available aqueous electrolyte, have been evaluated with promising results concerning rate capabilities and low temperature operation. Hybrid-organic battery designs have shown that quinones easily cycle Lithium ions and act in a dual ion battery with a Manganese oxide cathode. This thesis therefore gives a broad overview on how quinone organic batteries can be designed and provides an outlook on how future development can be focused.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)